一、前言
过去二十年对哮喘复杂病理生理学的研究推动了重症哮喘靶向治疗的发展。人们逐渐认识到哮喘是一种异质性疾病,其临床和炎症表型对治疗的反应也不同。最重要的临床表型是基于发病年龄。早发/儿童期发病的哮喘对常见空气过敏原的敏感性高,而晚发/成年型哮喘大多是非过敏的。在哮喘的炎症表型中,2型哮喘的特点是嗜酸性气道炎症,可由过敏原驱动,也可继发于2型先天淋巴细胞 (ILC2) 的激活。ILC2细胞不表达抗原特异性T细胞受体,但对上皮细胞因子有反应,例如胸腺基质淋巴细胞生成素 (TSLP) 和白细胞介素 (IL) 33(图1)。激活后,ILC2细胞可能会产生IL-5(导致嗜酸性粒细胞增多)和IL-13(导致呼出气一氧化氮升高和平滑肌细胞收缩,从而导致支气管高反应性)。
多种针对哮喘的细胞因子靶向疗法已被证明可有效治疗重症哮喘。而COPD也包括嗜酸性粒细胞增多的表型。为改善哮喘状况开发的单克隆抗体已在COPD中进行了测试,看看它们是否可为嗜酸性粒细胞表型COPD患者提供类似的治疗益处。本文回顾了现有生物制剂治疗哮喘和COPD的作用机制和功效。
图1 重症哮喘和慢性阻塞性肺疾病中的气道炎症
Pollens:花粉;Cathepsin:组织蛋白酶;CXCL:C-X-C基序趋化因子;Eosino:嗜酸性粒细胞;IFN-γ:干扰素-γ;IL:白细胞介素;ILC2:先天淋巴细胞2型;MMP:基质金属蛋白酶;Neutro:中性粒细胞;TNF-α:肿瘤坏死因子-α;TSLP:胸腺基质淋巴细胞生成素
二、重症哮喘及其靶向疗法
1. 重症哮喘表型
嗜酸性粒细胞型哮喘的定义是痰液嗜酸性粒细胞计数大于1%-3%,中性粒细胞型哮喘的定义是痰液中性粒细胞计数大于60%-76%。当两种细胞均增加时,为混合粒细胞型哮喘;均低于正常范围时,为少粒细胞型哮喘。
2. 重症哮喘的靶向疗法
美国食品和药物管理局已批准六种靶向药物用于治疗重症哮喘。(1)抗IgE的奥马珠单抗,是临床上第一个用于治疗重症哮喘的靶向药。可用于对常见过敏原敏感的哮喘患者,这类患者多为早发型哮喘或合并有过敏性鼻炎、慢性鼻窦炎伴鼻息肉或慢性荨麻疹等共存疾病。(2)抗IL-5的甲波利珠单抗,可改善重症嗜酸性粒细胞型哮喘。(3)抗IL-5的瑞替珠单抗,静脉给药后不仅可以显著减少青少年和成人重症哮喘的恶化,还能很好地减少迟发型哮喘患者的病情恶化。(4)抗IL-5受体的贝那利珠单抗,可通过抗体依赖的细胞介导的细胞毒作用来耗尽嗜酸性粒细胞和嗜碱性粒细胞。针对IL-5及其受体的治疗已被发现对成人发病的哮喘和慢性鼻窦炎合并鼻息肉、嗜酸性肺炎或EGPA的患者更有效。(5)抗IL-4受体的度普利尤单抗,是改善儿童或成人重症2型哮喘患者预后的良好选择,支持这种治疗的并存疾病包括特应性皮炎和慢性鼻窦炎合并鼻息肉。(6)抗警报素,如抗TSLP,可阻断上游细胞因子,因此可用于更广泛的重症哮喘患者。
综上,应根据患者的特点选择合适的单抗治疗。具体需要结合患者的临床特征、生物标志物和共存疾病等。
三、COPD及其靶向疗法
1. COPD表型
COPD的遗传、临床和炎症表型,如α-1抗胰蛋白酶缺乏症或端粒酶多态、吸烟与不吸烟、小气道疾病和肺气肿,以及频繁恶化或炎症表型如嗜酸性粒细胞型或中性粒细胞型等,这些表型的确立可能会促进靶向治疗的开发。
2. COPD的靶向疗法
可治疗特征这一概念已被提出,它指的是根据炎症特征使用相同的药物来管理慢性呼吸道疾病,如哮喘和COPD。慢性呼吸道疾病的一个重要的可治疗特征是嗜酸性呼吸道炎症,且已被证实可用于预测ICS和全身皮质类固醇的疗效。然而,几项研究表明,在哮喘中观察到的靶向药物的良好结果不能推广到COPD患者。与重症哮喘相比,COPD患者对生物制剂的反应较差的原因尚不清楚。
四、结语
对哮喘的免疫学和病理生理学方面的研究进展推动了新治疗方法的开发和重症哮喘患者结局的重大改善。然而目前,靶向治疗还不能很好地改善COPD。
参考文献:
1. Schleich FN, Chevremont A, Paulus V, et al. Importance of concomitant local and systemic eosinophilia inuncontrolled asthma. Eur Respir J 2014; 44: 97–108.
2. Green RH, Brightling CE, McKenna S, et al. Asthma exacerbations and sputum eosinophil counts: arandomised controlled trial. Lancet 2002; 360: 1715–1721.
3. Berry M, Morgan A, Shaw DE, et al. Pathological features and inhaled corticosteroid response of eosinophilicand non-eosinophilic asthma. Thorax 2007; 62: 1043–1049.
4. Pavord ID, Brightling CE, Woltmann G, et al. Non-eosinophilic corticosteroid unresponsive asthma. Lancet1999; 353: 2213–2214.
5. Haldar P, Pavord ID. Noneosinophilic asthma: a distinct clinical and pathologic phenotype 1. J Allergy ClinImmunol 2007; 119: 1043–1052.
6. Brusselle GG, Vanderstichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severeasthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax 2013; 68:322–329.
7. Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life inadults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial.Lancet 2017; 390: 659–668.
8. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet 2006; 368: 804–813.
9. Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J AllergyClin Immunol 2019; 144: 1–12.
10. Hanania NA, Fortis S, Haselkorn T, et al. Omalizumab in asthma with fixed airway obstruction: post hocanalysis of EXTRA. J Allergy Clin Immunol Pract 2022; 10: 222–228.
11. Stevens WW, Jerschow E, Baptist AP, et al. The role of aspirin desensitization followed by oral aspirintherapy in managing patients with aspirin-exacerbated respiratory disease: a work group report from theRhinitis, Rhinosinusitis and Ocular Allergy Committee of the American Academy of Allergy, Asthma &Immunology. J Allergy Clin Immunol 2021; 147: 827–844.
12. Jonckheere A-C, Bullens DMA, Seys SF. Innate lymphoid cells in asthma: pathophysiological insights frommurine models to human asthma phenotypes. Curr Opin Allergy Clin Immunol 2019; 19: 53–60.
13. van der Ploeg EK, Golebski K, van Nimwegen M, et al. Steroid-resistant human inflammatory ILC2s aremarked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol 2021; 6: eabd3489.
14. Schleich F. Diagnosis and clinical interest of asthma inflammatory phenotypes. https://orbi.uliege.be/bitstream/2268/177575/1/2014_SCHLEICH_THESE.pdf
15. Schleich FN, Manise M, Sele J, et al. Distribution of sputum cellular phenotype in a large asthma cohort:predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm Med 2013; 13: 11.
16. Demarche S, Schleich F, Henket M, et al. Detailed analysis of sputum and systemic inflammation in asthmaphenotypes: are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm Med 2016; 16: 46.
17. Green RH, Pavord I. Stability of inflammatory phenotypes in asthma. Thorax 2012; 67: 665–667.
18. Brightling CE, Bradding P, Symon FA, et al. Mast-cell infiltration of airway smooth muscle in asthma. N EnglJ Med 2002; 346: 1699–1705.
19. Global Initiative for Asthma. Global strategy for asthma management and prevention. https://ginasthma.org/gina-reports/ Date last updated: 2022.
20. Schleich F, Brusselle G, Louis R, et al. Heterogeneity of phenotypes in severe asthmatics. The Belgian SevereAsthma Registry (BSAR). Respir Med 2014; 108: 1723–1732.
21. Brusselle GG, Koppelman GH. Biologic therapies for severe asthma. N Engl J Med 2022; 386: 157–171.
22. Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation andtreatment of severe asthma. Eur Respir J 2014; 43: 343–373.
23. Demarche SF, Schleich FN, Paulus VA, et al. Is it possible to claim or refute sputum eosinophils ⩾3% inasthmatics with sufficient accuracy using biomarkers? Respir Res 2017; 18: 133.
24. Schleich FN, Zanella D, Stefanuto P-H, et al. Exhaled volatile organic compounds are able to discriminatebetween neutrophilic and eosinophilic asthma. Am J Respir Crit Care Med 2019; 200: 444–453.
25. Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57: 2000528.
26. Frøssing L, Silberbrandt A, Von Bülow A, et al. The prevalence of subtypes of type 2 inflammation in anunselected population of patients with severe asthma. J Allergy Clin Immunol Pract 2021; 9: 1267–1275.
27. Hanania NA, Alpan O, Hamilos DL, et al. Omalizumab in severe allergic asthma inadequately controlled withstandard therapy: a randomized trial. Ann Intern Med 2011; 154: 573–582.
28. Humbert M, Taillé C, Mala L, et al. Omalizumab effectiveness in patients with severe allergic asthmaaccording to blood eosinophil count: the STELLAIR study. Eur Respir J 2018; 51: 1702523.
29. Adachi M, Kozawa M, Yoshisue H, et al. Real-world safety and efficacy of omalizumab in patients with severeallergic asthma: a long-term post-marketing study in Japan. Respir Med 2018; 141: 56–63.
30. Cazzola M, Camiciottoli G, Bonavia M, et al. Italian real-life experience of omalizumab. Respir Med 2010; 104:1410–1416.
31. Yorgancıoğlu A, Öner Erkekol F, Mungan D, et al. Long-term omalizumab treatment: a multicenter, real-life,5-year trial. Int Arch Allergy Immunol 2018; 176: 225–233.
32. Brusselle G, Michils A, Louis R, et al. “Real-life” effectiveness of omalizumab in patients with severepersistent allergic asthma: the PERSIST study. Respir Med 2009; 103: 1633–1642.
33. Frix AN, Schleich F, Paulus V, et al. Effectiveness of omalizumab on patient reported outcomes, lungfunction, and inflammatory markers in severe allergic asthma. Biochem Pharmacol 2020; 179: 113944.
34. Casale TB, Luskin AT, Busse W, et al. Omalizumab effectiveness by biomarker status in patients withasthma: evidence from PROSPERO, a prospective real-world study. J Allergy Clin Immunol Pract 2019; 7:156–164.
35. Busse WW, Massanari M, Kianifard F, et al. Effect of omalizumab on the need for rescue systemiccorticosteroid treatment in patients with moderate-to-severe persistent IgE-mediated allergic asthma: apooled analysis. Curr Med Res Opin 2007; 23: 2379–2386.
36. Busse W, Spector S, Rosén K, et al. High eosinophil count: a potential biomarker for assessing successfulomalizumab treatment effects. J Allergy Clin Immunol 2013; 132: 485–486.e11.
37. Humbert M, Beasley R, Ayres J, et al. Benefits of omalizumab as add-on therapy in patients with severepersistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4treatment): INNOVATE. Allergy 2005; 60: 309–316.
38. Sorkness CA, Wildfire JJ, Calatroni A, et al. Reassessment of omalizumab-dosing strategies andpharmacodynamics in inner-city children and adolescents. J Allergy Clin Immunol Pract 2013; 1: 163–171.
39. Hanania NA, Wenzel S, Rosen K, et al. Exploring the effects of omalizumab in allergic asthma: an analysis ofbiomarkers in the EXTRA study. Am J Respir Crit Care Med 2013; 187: 804–811.
40. Vignola AM, Humbert M, Bousquet J, et al. Efficacy and tolerability of anti-immunoglobulin E therapy withomalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. Allergy2004; 59: 709–717.
41. Vennera MDC, Sabadell C, Picado C, et al. Duration of the efficacy of omalizumab after treatmentdiscontinuation in “real life” severe asthma. Thorax 2018; 73: 782–784.
42. Chanez P, Contin-Bordes C, Garcia G, et al. Omalizumab-induced decrease of FcεRI expression in patientswith severe allergic asthma. Respir Med 2010; 104: 1608–1617.
43.Sposato B, Scalese M, Camiciottoli G, et al. Mepolizumab effectiveness and allergic status in real life. IntArch Allergy Immunol 2021; 182: 311–318.
44. Pavord ID, Korn S, Howarth P, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre,double-blind, placebo-controlled trial. Lancet 2012; 380: 651–659.
45. Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab treatment in patients with severe eosinophilic asthma.N Engl J Med 2014; 371: 1198–1207.
46. Chupp GL, Bradford ES, Albers FC, et al. Efficacy of mepolizumab add-on therapy on health-related qualityof life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind,placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir Med 2017; 5: 390–400.
47. Schleich F, Graff S, Nekoee H, et al. Real-word experience with mepolizumab: does it deliver what it haspromised? Clin Exp Allergy 2020; 50: 687–695.
48. Harrison T, Canonica GW, Chupp G, et al. Real-world mepolizumab in the prospective severe asthmaREALITI-A study: initial analysis. Eur Respir J 2020; 56: 2000151.
49. Bel EH, Wenzel SE, Thompson PJ, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilicasthma. N Engl J Med 2014; 371: 1189–1197.
50. Castro M, Zangrilli J, Wechsler ME, et al. Reslizumab for inadequately controlled asthma with elevated bloodeosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled,phase 3 trials. Lancet Respir Med 2015; 3: 355–366.
51. Castro M, Mathur S, Hargreave F, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized,placebo-controlled study. Am J Respir Crit Care Med 2011; 184: 1125–1132.
52. Corren J, Weinstein S, Janka L, et al. Phase 3 Study of reslizumab in patients with poorly controlled asthma:effects across a broad range of eosinophil counts. Chest 2016; 150: 799–810.
53. Bjermer L, Lemiere C, Maspero J, et al. Reslizumab for inadequately controlled asthma with elevated bloodeosinophil levels: a randomized phase 3 study. Chest 2016; 150: 789–798.
54. Bleecker ER, FitzGerald JM, Chanez P, et al. Efficacy and safety of benralizumab for patients with severeasthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): arandomised, multicentre, placebo-controlled phase 3 trial. Lancet 2016; 388: 2115–2127.
55. Harrison TW, Chanez P, Menzella F, et al. Onset of effect and impact on health-related quality of life,exacerbation rate, lung function, and nasal polyposis symptoms for patients with severe eosinophilicasthma treated with benralizumab (ANDHI): a randomised, controlled, phase 3b trial. Lancet Respir Med2021; 9: 260–274.
56. Nair P, Wenzel S, Rabe KF, et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N EnglJ Med 2017; 376: 2448–2458.
57. FitzGerald JM, Bleecker ER, Nair P, et al. Benralizumab, an anti-interleukin-5 receptor α monoclonalantibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): arandomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016; 388: 2128–2141.
58. Kavanagh JE, Hearn AP, Dhariwal J, et al. Real-world effectiveness of benralizumab in severe eosinophilicasthma. Chest 2021; 159: 496–506.
59. Corren J, Maspero JF, Valero Santiago AL, et al. Dupilumab improves asthma-related patient reportedoutcomes in asthma patients with chronic rhinosinusitis or nasal polyposis (CRS/NP) in Liberty AsthmaQuest. Eur Respir J 2018; 52: Suppl. 62, PA1124.
60. Castro M, Corren J, Pavord ID, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolledasthma. N Engl J Med 2018; 378: 2486–2496.
61. Corren J, Katelaris CH, Castro M, et al. Effect of exacerbation history on clinical response to dupilumab inmoderate-to-severe uncontrolled asthma. Eur Respir J 2021; 58: 204498.
62. Rabe KF, Nair P, Brusselle G, et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severeasthma. N Engl J Med 2018; 378: 2475–2485.
63. Sher LD, Wechsler ME, Rabe KF, et al. Dupilumab reduces oral corticosteroid use in patients withcorticosteroid-dependent severe asthma: an analysis of the phase 3, open-label extension TRAVERSE trial.Chest 2022; 162: 46–55.
64. Wechsler ME, Ford LB, Maspero JF, et al. Long-term safety and efficacy of dupilumab in patients withmoderate-to-severe asthma (TRAVERSE): an open-label extension study. Lancet Respir Med 2022; 10: 11–25.
65. Bacharier LB, Maspero JF, Katelaris CH, et al. Dupilumab in children with uncontrolled moderate-to-severeasthma. N Engl J Med 2021; 385: 2230–2240.
66. Dupin C, Belhadi D, Guilleminault L, et al. Effectiveness and safety of dupilumab for the treatment of severeasthma in a real-life French multi-centre adult cohort. Clin Exp Allergy 2020; 50: 789–798.
67. Porsbjerg CM, Sverrild A, Lloyd CM, et al. Anti-alarmins in asthma: targeting the airway epithelium withnext-generation biologics. Eur Respir J 2020; 56: 2000260.
68. Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolledasthma. N Engl J Med 2021; 384: 1800–1809.
69. Corren J, Ambrose CS, Sałapa K, et al. Efficacy of tezepelumab in patients with severe, uncontrolled asthmaand perennial allergy. J Allergy Clin Immunol Pract 2021; 9: 4334–4342.e6.
70. Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med 2017;377: 936–946.
71. Corren J, Garcia Gil E, Griffiths JM, et al. Tezepelumab improves patient-reported outcomes in patients withsevere, uncontrolled asthma in PATHWAY. Ann Allergy Asthma Immunol 2021; 126: 187–193.
72. Diver S, Khalfaoui L, Emson C, et al. Effect of tezepelumab on airway inflammatory cells, remodelling, andhyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind,randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 2021; 9: 1299–1312.
73. Puzzovio PG, Eliashar R, Levi-Schaffer F. Tezepelumab administration in moderate-to-severe uncontrolledasthma: is it all about eosinophils? J Allergy Clin Immunol 2022; 149: 1582–1584.
74. Brenard E, Pilette C, Dahlqvist C, et al. Real-life study of mepolizumab in idiopathic chronic eosinophilicpneumonia. Lung 2020; 198: 355–360.
75. Schleich F, Vaia E-S, Pilette C, et al. Mepolizumab for allergic bronchopulmonary aspergillosis: report of 20cases from the Belgian Severe Asthma Registry and review of the literature. J Allergy Clin Immunol Pract2020; 8: 2412–2413.e2.
76. Wenzel S, Castro M, Corren J, et al. Dupilumab efficacy and safety in adults with uncontrolled persistentasthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: arandomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 2016; 388: 31–44.
77. Menzies-Gow A, Bafadhel M, Busse WW, et al. An expert consensus framework for asthma remission as atreatment goal. J Allergy Clin Immunol 2020; 145: 757–765.
78. Menzies-Gow A, Hoyte FL, Price DB, et al. Clinical remission in severe asthma: a pooled post hoc analysis ofthe patient journey with benralizumab. Adv Ther 2022; 39: 2065–2084.
79. Moermans C, Brion C, Bock G, et al. Sputum type 2 markers could predict remission in severe asthmatreated with anti-interleukin-5. Chest 2023; in press[https://doi.org/10.1016/j.chest.2023.0
1.037].
80. Kelsen SG, Agache IO, Soong W, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severeasthma: a randomized clinical trial. J Allergy Clin Immunol 2021; 148: 790–798.
81. Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with
moderate-to-severe asthma. N Engl J Med 2021; 385: 1656–1668.
82. Brightling CE, Nair P, Cousins DJ, et al. Risankizumab in severe asthma – a phase 2a, placebo-controlledtrial. N Engl J Med 2021; 385: 1669–1679.
83. Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, ahuman anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med2013; 188: 1294–1302.
84. O’Byrne PM, Metev H, Puu M, et al. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients withuncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med2016; 4: 797–806.
85. Gosens R, Hiemstra PS, Adcock IM, et al. Host–microbe cross-talk in the lung microenvironment:implications for understanding and treating chronic lung disease. Eur Respir J 2020; 56: 1902320.
86. Ghebre MA, Pang PH, Diver S, et al. Biological exacerbation clusters demonstrate asthma and chronicobstructive pulmonary disease overlap with distinct mediator and microbiome profiles. J Allergy ClinImmunol 2018; 141: 2027–2036.e12.
87. Castro M, Rubin AS, Laviolette M, et al. Effectiveness and safety of bronchial thermoplasty in the treatmentof severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir CritCare Med 2010; 181: 116–124.
88. Sun Q, Fang L, Roth M, et al. Bronchial thermoplasty decreases airway remodelling by blockingepithelium-derived heat shock protein-60 secretion and protein arginine methyltransferase-1 in fibroblasts.Eur Respir J 2019; 54: 1900300.
89. Chernyavsky IL, Russell RJ, Saunders RM, et al. In vitro, in silico and in vivo study challenges the impact ofbronchial thermoplasty on acute airway smooth muscle mass loss. Eur Respir J 2018; 51: 1701680.
90. Cahill KN, Katz HR, Cui J, et al. KIT inhibition by imatinib in patients with severe refractory asthma. N Engl JMed 2017; 376: 1911–1920.
91. Sutcliffe A, Hollins F, Gomez E, et al. Increased nicotinamide adenine dinucleotide phosphate oxidase 4expression mediates intrinsic airway smooth muscle hypercontractility in asthma. Am J Respir Crit Care Med2012; 185: 267–274.
92. Prihandoko R, Kaur D, Wiegman CH, et al. Pathophysiological regulation of lung function by the free fattyacid receptor FFA4. Sci Transl Med 2020; 12: eaaw9009.
93. Nussbaumer-Ochsner Y, Rabe KF. Systemic manifestations of COPD. Chest 2011; 139: 165–173.
94. Barnes PJ. Inflammatory endotypes in COPD. Allergy 2019; 74: 1249–1256.
95. Vanfleteren LEGW, Spruit MA, Wouters EFM, et al. Management of chronic obstructive pulmonary diseasebeyond the lungs. Lancet Respir Med 2016; 4: 911–924.
96. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy ClinImmunol 2016; 138: 16–27.
97. Schleich F, Corhay JL, Louis R. Blood eosinophil count to predict bronchial eosinophilic inflammation inCOPD. Eur Respir J 2016; 47: 1562–1564.
98. McDonald VM, Gibson PG. Treatable Traits in Asthma and COPD. Arch Bronconeumol 2022; 58: 583–585.
99. Hastie AT, Martinez FJ, Curtis JL, et al. Association of sputum and blood eosinophil concentrations withclinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respir Med 2017; 5: 956–967.
100. Pascoe S, Locantore N, Dransfield MT, et al. Blood eosinophil counts, exacerbations, and response to theaddition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease:a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med 2015; 3:435–442.
101. Pavord ID, Lettis S, Locantore N, et al. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonistefficacy in COPD. Thorax 2016; 71: 118–125.
102. Liu T, Xiang Z-J, Hou X-M, et al. Blood eosinophil count-guided corticosteroid therapy and as a prognosticbiomarker of exacerbations of chronic obstructive pulmonary disease: a systematic review andmeta-analysis. Ther Adv Chronic Dis 2021; 12: 20406223211028770.
103. Harries TH, Rowland V, Corrigan CJ, et al. Blood eosinophil count, a marker of inhaled corticosteroideffectiveness in preventing COPD exacerbations in post-hoc RCT and observational studies: systematic reviewand meta-analysis. Respir Res 2020; 21: 3.
104. Pavord ID, Chanez P, Criner GJ, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease.N Engl J Med 2017; 377: 1613–1629.
105. Pavord ID, Chapman KR, Bafadhel M, et al. Mepolizumab for eosinophil-associated COPD: analysis ofMETREX and METREO. Int J Chron Obstruct Pulmon Dis 2021; 16: 1755–1770.
106. Criner GJ, Celli BR, Brightling CE, et al. Benralizumab for the prevention of COPD exacerbations. N Engl JMed 2019; 381: 1023–1034.
107. Agusti A, Bel E, Thomas M, et al. Treatable traits: toward precision medicine of chronic airway diseases. EurRespir J 2016; 47: 410–419.
108. Green RH, Brightling CE, Woltmann G, et al. Analysis of induced sputum in adults with asthma:identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids.Thorax 2002; 57: 875–879.
109. Kupczyk M, Haque S, Middelveld RJM, et al. Phenotypic predictors of response to oral glucocorticosteroidsin severe asthma. Respir Med 2013; 107: 1521–1530.
110. van Rensen ELJ, Evertse CE, van Schadewijk WAAM, et al. Eosinophils in bronchial mucosa of asthmaticsafter allergen challenge: effect of anti-IgE treatment. Allergy 2009; 64: 72–80.
111. Brightling CE, Bleecker ER, Panettieri Jr RA, et al. Benralizumab for chronic obstructive pulmonary diseaseand sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet RespirMed 2014; 2: 891–901.
112. Rabe KF, Celli BR, Wechsler ME, et al. Safety and efficacy of itepekimab in patients with moderate-to-severeCOPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir Med 2021; 9:1288–1298.
113. Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease.Lancet Respir Med 2019; 7: 907–920.
114. Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lungdiseases. Lancet 2014; 384: 691–702.
115. Wang Z, Singh R, Miller BE, et al. Sputum microbiome temporal variability and dysbiosis in chronicobstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax 2018; 73: 331–338.
116. Dicker AJ, Huang JTJ, Lonergan M, et al. The sputum microbiome, airway inflammation, and mortality inchronic obstructive pulmonary disease. J Allergy Clin Immunol 2021; 147: 158–167.
117. Keir HR, Shoemark A, Dicker AJ, et al. Neutrophil extracellular traps, disease severity, and antibioticresponse in bronchiectasis: an international, observational, multicohort study. Lancet Respir Med 2021; 9:873–884.
118. Ubags NDJ, Marsland BJ. Mechanistic insight into the function of the microbiome in lung diseases. EurRespir J 2017; 50: 1602467.
119. Contoli M, Pauletti A, Rossi MR, et al. Long-term effects of inhaled corticosteroids on sputum bacterial andviral loads in COPD. Eur Respir J 2017; 50: 1700451.
120. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med2011; 365: 689–698.
121. Rogers GB, Bruce KD, Martin ML, et al. The effect of long-term macrolide treatment on respiratory
microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised,
double-blind, placebo-controlled BLESS trial. Lancet Respir Med 2014; 2: 988–996.
122 Taylor SL, Leong LEX, Mobegi FM, et al. Long-term azithromycin reduces Haemophilus influenzae andincreases antibiotic resistance in severe asthma. Am J Respir Crit Care Med 2019; 200: 309–917.
本 期 作 者
孟爱宏 主任医师
医学博士/主任医师/教授/博士生导师
河北医科大学第二医院北院区呼吸与危重症医学科主任
孙同欣玮 硕士研究生
河北医科大学第二医院
本文仅代表作者个人观点
仅供医务人员参考
欢迎投稿至:conwhite_8@hotmail.com
订阅后可查看全文(剩余80%)