随着钠离子电池和氢燃料电池材料的成功研发及产业化,贝特瑞在新能源电池材料领域中拓展了更全面的材料解决方案,为新能源产业的升级发展提供更多材料选择。
贝特瑞研究院院长李子坤博士
5月16日,贝特瑞在深圳2023CIBF正式发布钠离子电池硬炭负极材料——探钠350及钠电正极材料贝钠-O3B。贝特瑞中央研究院李子坤博士在发布会上介绍,“探钠350”材料比容量可达350mAh/g,首次充放电效率达90%,贝钠-O3B材料比容量可达145 mAh/g,压实密度大于3.4g/cc,将大幅提高钠电池的容量及循环寿命,并显著提高充电效率及极低温性能。
对比锂离子电池,钠离子电池最大的短板是能量密度,而提升电池能量密度的关键在于正负极材料。贝特瑞此次发布了探钠350硬炭负极和贝钠-O3B氧化物正极材料,综合性能在行业竞争力方面具有领先优势,为钠离子电芯设计和制成提供了坚实基础,也预示着在钠电产业链产业化进程中实现了最为关键的技术突破。
同时,会上,贝特瑞宣布在燃料电池关键材料国产自主化上已实现重要突破,其自主研制的燃料电池催化层碳材料“探氢BMC” 具有较大的石墨化度、较大的比表面积、较大的介孔孔容等优点,同时兼顾多级孔径可调,新型扩散层碳材料“探氢BGD”则可进行定制化的微孔层孔调控,并具有高结晶度和极低的表面缺陷与含氧基团,能使材料本征表面长期维持超疏水状态。确保了大电流下的气体传质需求。将助力国产燃料电池实现更少的贵金属用量、更高的功率密度、更优的水管理能力,更低的全生命周期成本,更长的使用寿命。
膜电极是质子交换膜燃料电池的核心部件,主要包括质子交换膜、催化层和气体扩散层。催化层是燃料电池中化学能转化为电能的场所,对能量转化效率、输出功率、使用寿命等都有决定性的影响。气体扩散层是注入燃料电池中的反应物在进入催化层之前的初级分配和反应后产物从催化层排出的场所。
2000年成立的贝特瑞,一直深耕于新能源材料领域,曾推出国内第一款高容量锂电负极材料818,并在全球率先实现硅基负极材料产业化,目前其负极材料市场占有率已经连续10年保持全球第一。2023年,新能源行业发展进入新格局,贝特瑞领先的技术实力将为其全球市场锚定更广阔的未来。
【撰文】邱永宽
【通讯员】曾蕾
订阅后可查看全文(剩余80%)